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Abstract. n e  validity of the finite-size scaling prediction about the existence of logarith- 
mic corrections in the free energy due to comers is sNdied by the example of the mean 
spherical model. The general case of a hypercubic lattice of arbitrary dimensionality d>2, 
under boundary conditions which are periodic in d'sO dimensions and free in the 
remaining d-d' dimensions is considered. n e  critical regime, as the size of the system 
L - t m ,  is specified by the asymptotic behaviour of the ratio L/&, where lL is the 
correlation length of the finite system. New results are the double-logarithmic corrections 
due to corners and logarithmic corrections due to one-dimensional edges in the regime 
LIEL,ccln L which takes place at the bulk critical point. . 

1. Introduction 

As was shown by Cardy and Peschel [l], the free energy of two-dimensional 
conformally invariant models on manifolds with Euler number x = O  and non-smooth 
boundaries contains logarithmic finite-size corrections, arising from each corner, with 
universal amplitudes proportional to the conformal anomaly number. By using finite- 
size scaling arguments Privman [2] has predicted similar corrections for systems of 

: linear size L at arbitrary dimensionality d 

eomcn 

with some universal amplitudes yi attributed to each corner. 
The extension to higher dimensionality of the prediction (1.1) has been checked by 

the example of a few models. Logarithmic contributions in the free energy, AF('), at 
arbitrary amensionality and three different types of boundary conditions,.have been 
obtained ip a Gaussian-type model by Gelfand and Fisher [3,4]. These contributions 
were fourid to arise in the small block limit due to the zero-eigenvalue mode and, 
contrary to the predictions of both conformal theory [l] and finite-size scaling 
arguments [2], persist under periodic boundary conditions. It shou!d be mentioned 
that In L terms, both under free and periodic boundary conditions, have been found 
by Duplantier and David [5] in the free energy of the two-dimensional conformally 
invariant spanning tree model. 

.,'Logarithmic inite-size corrections have been found also in the exactly solvable for 
general d constrained monomer-dimer model (CMD) [6] .  It has been shown [7] that the 
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difference in the free energies Fd,o- Fd.da of the d-dimensional CMD model, with Fd,,, 
corresponding to fully free boundary conditions, and Fd,d. corresponding to periodic 
boundaries in d' 3 1 dimensions and free boundaries in the remaining d - d'  dimen- 
sions, contains the logarithmic correction term 2lmdInL which comes from the 2d 
corners of the system with linear size L. 

The aim of the present work is to study the problem by the example of the mean 
spherical model 181. In section 2 we formulate the model with an emphasis on its 
similiarities and dissimilarities with the Gaussian and c m  models. Short comments on 
this aspect are given at the end of each of the following sections. Section 3 describes 
shortly the mathematical transformations used to obtain a convenient representation ' for the partition function. The detailed finite-size analysis of the free energy is given in 

I section 4 for arbitrary dimensionalities. The discussion part, section 5, is devoted to 
the classification of the different logarithmic in L contributions. By using the results of 
[lo] for the finite-size asymptotic behaviour of the correlation length in the three- 
dimensional case, we obtain also explicit expressions for the corner and edge 
contributions. 

J G Brankov and D M Danchev 

' 

2. The problem 

We consider the ferromagnetic mean spherical model on a finite d dimensional 
hypercubic lattice Ad= L1 X . ' . X L d E  zd of N sites, with periodic boundary con- 
ditions in the first d'3O dimensions and free boundaries in the remaining d'-d 
dimensions. Assuming nearest-neighbours interaction, the partition functions of both 
the mean spherical and Gaussian models are delined in terms of the quadratic form 

whereu,ER1,  EA, arethedynamicalvariables,s>Oisthesphericalfield,and K>Ois 
the dimensionless coupling. The summation in the interaction term is taken over all 
different pairs (i, j )  of nearest neighbours under the imposed boundary conditions. 
The eigenvalues of the quadratic form (2.1) are well known [3];  they can be 
labelled by the set k={k,, . . . , kd} with 

k,=O, 1,. . . , L,- 1 v = l ,  . . . , d. (2.2) 

It is convenient to replace the spherical field s by the correlation length E of the 
Gaussian model, defined as E-*=2s/K-2d>O, and rewrite the eigenvalues E ~ , ~ .  of 
(2.1) in the form 

&d.d.(k; '$> K;  L)=(K/2)[E-*+Id,d*(k; L ) ]  (2.3) 

where 
d' d 

Id.d(k; L) = 2 [ 1 -cos ""1 L" + 2 [ 1 -COS $1. (2.4) 
v=d'+l "=I 

For simplicity of notation, we assume in the remainder that L, = . . . = L,=L. 
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The evaluation of the partition function Z&.(K, t; L) of the Gaussian model now 

z zd*(K ,  L )  = ( ? d K ) " ' ( e d , d ' ( t ;  L))-"* (215) 
yields 

I where 

Let us introduce the sets D ={1, . . . ,4 and D'={l, . . . , d ' } = D  if d'> 1, D'= 0 
ifd'=O.-Let /SI bethenumberofelementsinasetSED. NotethatforanysetScD. 

(2.7) 

Therefore, the product (2.6) can be split into co-factors, each of which corresponds to 
a given set DIS of zero-valued indices 5, p E D\S, 

Qd.a(t;L)=t-' JJ QAt; L )  (2.9) 
S E D  
S # 0  

where 

(2.10) 

Obviously, the factor t-' in (2.9) represents the contribution of the zero-eigenvalue 
 mode with k=O, Y =  1, . . . , d. After substitution in (2.5) it leads to a factor o f t  in the 
finite-size partition function of the Gaussian model, thus causing the divergence of the 
latter at critica1ity;i.e. at E= m. Dropping the zero-mode contribution in (2.9) and 
passing to the limit t+a one obtains the partition function &h.d, of the c r i t i c a l ' w ~  
model [7]: 

(2.11) 

Therefore, as noted in [7], the logarithmic in L contributions in the free energy 
-ln&.dt(L) of the CMD model are proportional, with the coefficient -2, to those of 
the critical Gaussian model in which the k=O mode has been removed 'by hand'. 

The canonical free energy of the mean spherical model, Fd.d,r normalized by the 
factor (kT)-l and up to unessential additive terms, is given by the Legendre 
transformation 

Fd,d,(K; L)=SUpghl Qd,d'(t; L)-E-'KN). (2.12) 
c 

The point t=&(K) at which the supremum in (2.12) is attained defines the 
finite-size' correlation length &(K) of the mean spherical model. !rice the 
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L-dependence of EL(Q may be non-trivial and sensitive to the critical regime under 
consideration, the finite-size corrections in the fee energy of the mean spherical model 
may essentially differ from those for the Gaussian and CMD models. 

J G Brankov and D M Dunchev 

3. Mathematical techniques 

The products Q.,,(t; L),  see (2.9) and (2.10), which enter into expression (2.12) for 
the free energy, will be evaluated with the aid of techniques similar to the one 
developed in [7] for the constrained monomer-dimer model. The mathematical 
transformations involved are based on the identities 

L-1 17 [d + 2 -2 cos(2nk/L)] = a-'gP)(a) 

n [d+ 2 - 2 c O s ( z k / ~ j l =  a-'gp)(u) 

k=l 

L-I 

k = l  

where 

g~)(u)={~2-L[(a2+4)"2t~a]L-2L[(a2+4)1n+u]-L} '  (3.3) 
gp)(u)=(d+4)-1'2{Z-2L[(a2+4)1"+a]2L-22L [( a' + 4 1 '"+a 1- 2L }. (3.4) 
These are simple consequences of a known trigonometric identity [9], valid for any 
integer L> 1 and real u f O .  

The idea is, by using substitutions of the form a2=$-2+An-l,,-l(k; L )  in (3.1) or 
(3.2), to generate chains of recurrent relations for the products e,.&'; L) .  These 
chains terminate either at (if n = m) 

"'"I L 

L - I  

el&; L ) = n  [*-2+2-2c0s- =*'gp)(E-') 
k-I 

or at (if n>m) 

For example, in the case n>m we obtain 

where, n =  IS1 3 1, m= IS n D'I 3 0  

(3.5) 

(3.6) 

(3:7) 
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The above-described transformations lead to the following final expression, valid 
for arbitrary intger values of the dimensionalities d and d ' :  

In Qd,&; L) = -2 In E+ 2"'(-3-' In el.&; L) 
S c D  

(3.9) 

Here n = IS1 2 1, m= IS f l  D'l and the convention is that a sum over an empty set is 
zero: in the case of fully free boundary conditions, d' = 0,D.' = 0 and m = 0, therefore 
the third, fourth and sixth term in the right-hand side of (3.9) vanish; in the case of 
fully periodic boundary conditions, d' = d, D' = D and m = n, hence the second, fifth 
and sixth term in the right-hand side of (3.9) vanish. 

; L )  = L' and e,,,( m ; L) = L, respectively, i.e. the results used in the analysis of the CIMD model 
(compare equation (3.7) with equation (3.19) in [7]). In the same limit Ri!),(m; L)  
and F&( m ; L )  are easily shown not to contribute logarithmically in L terms. In the 
mean spherical model, however, the situation is much more complicated clue to the 
specific L-dependence of the finite-size correlation length tL(K) in the different 
critical regimes. A finite-size an analysis of expression (3.10) when as L+m 
will be given in the next section. 

Note that taking the limit 5- m in (3.5) and (3.6) one obtains Ql.,( 

4. Logarithmic finite-size corrections in the Free energy 

As already mentioned, the mean spherical model differs from the Gaussian model by 
the fact that the correlation length tL(K) is not a free parameter. At the first stage of 
our analysis it suffices to assume that the bulk spherical model is critical, so that 
tL+ . We will consider all the three critical regimes: (a )L/&+ 0; (b) 
LIEL= 0(1), and (c) L/&+ m . At the final stage, see section 5, we discuss ithe sets of 
boundary conditions and dimensionalities which lead to one or the other a.lternative 
types of behaviour of L/ tL ,  as well as the geometrical origin of the logarithmic in L 
corrections. 

Obviously, terms proportional to In L in the free energy can arise directly from 
powers of L in the product Qd&, see equations (2.9) and (2.12), or from powers of 
5 when tL = O(L) as L+ m . A less obvious source of In L terms are the factors 
asymptotically proportional to powers of exp(L/f) with L/S@=ln L as L-m. Indeed, 
by using standard finite-size analysis it can be shown [lo] that at d = 3 the presence of 

when L 4  
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free surfaces in the spherical model leads to a positive logarithmic shift in the critical 
coupling 

J G Brankov and D M Donchev 

K,, L= Kc+ a In LIL (4.1) 

where a>O is a geometry-dependent amplitude. As a result, in an infinitesimal 
neighbourhood of the shifted critical coupling one has 

EL(Q = O(L) (K- K,JL"'= O(1) (4.2) 

EL(Q = Llb In L (K- K,)L""= O(1) (4.3) 

but in an infinitesimal neighbourhood of the bulk critical coupling (d = 3) 

where b>O is a geometry-dependent amplitude. Hence, in the regime (4.3) LIEL= 
b In L. 

Now we pass to a finite-size analysis of the right-hand side of equation (3.9) with 
the aim to select all the terms asymptotically proportional to In L ,  In E and LIE. 

First of all, by using the explicit expressions (3.3) and (3.4) we note that if a+O as 
L+ m , then 

2 In (nL) + O ( 2 )  aL-0 (4.44 

aL[1+ O@)] + o(e-OL) aL+m.  (4.4c) 

Ingf')(u) = 2 In [2 sinh(aL/2)] + O(2) aL = 0(1) (4.4b) 

h(aL) + O ( 2 )  aL-0 (4.5a) 

a L =  0(1) (4.56) 

1 
1 
L:+L/E 
1 : 1: :+LIE LIE+ m . 

Ingf)(a) = ln[sinh(aL)] + O(2) 
aL[1+ O(2)J + O(e-&') aL+ m (4.5c) 

LIE- 0 (4.6a) 

ln QI.&)= L L/E= O(1) (4.66) 

LIE+ m (4.6~) 

Hence, the terms In Q1.&) (see (3.6)) and In &,(E)  (see (3.5)) yield 

L/E+O (4.74 

In el. d E )  = 2 In L LIE= O(1) (4.7b) 

(4.7c) 

Next we consider the contributions from In @*(E), s=O, 1 (see (3.8)) 

L-1 

In R%,(E)=C Ing1')([E-2$a".m(,)11/2). (4.8) 
 YES k,=l 
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Since for the arguments a = [E-'++d,,,(k)]'/* of the function In gp)(u) in the right-hand 
side of (4.8) we have the uniform in k,= 1, . . . , L - 1, Y = 1, . . . , n, estimates (n> 1): 

(4.9b) 

from (4.4) and (4 .9,  it follows that if L/E+O, or L/E=O(l)  

In R$lm(E) = o(L"+*) x (analytical in E-' function) 

+ O(L") x (analytical in L'/E' function).' (4.10) 

Finally, to study the regime L/E+ m , when E+ m and L+ m , we introduce the 
notation 

A = S n D '  B = S  n (D\D') ISI=n IAl=m (4.11) 

and rewrite (4.8) in the form 

( I - r ) L  L-1 

~n R$)AE)=s$)~(E; E,L)  + ~nglf'([~-~++d..~(k)~~' ') (4.12) 
peA + r r L  Y E B  k+eL 

withsomesmall but fixedE>O. Fortheargumentsa=[~-'++d~,,(k)]'"of thefunction 
In&) (U )  in the second term in the right-hand side of (4.12) we have the estimate 

aL>[L2/EZ++L2(1 -cosn€)]]*'Z-LL[E-2+nZ&Zp'/2 (4.13) 

which proves that the considered term is analytical in E-' if E+m as L.+ m . 
Therefore, contributions proportional to LIE as L+ m may appear from 

ZL 

s$)&;E, L ) = Y C  lngl')([E-Z+a,,m(k)]in). (4.14) 
Y E S  k,=l  . 

Since the arguments of the function In&) (a) in this case do not exceed a value of 
order O(E), we can use the expansion (4.4~) and (4.5~) to obtain the leacling-order 
asymptotic form 

(4.15) 
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Consider first the case IAl = O  and IBi = 1. Then, by adding and subtracting the k=O 
term and using the Poisson summation formula [Ill,  we obtain 

Sf&’; E,  L)-L [E-’+ (zk/L)’]”’ 

J G Brankov and D M Danchev 

CL 

k=l 

= L 2 dp e””q[[-’ + (1cp/L)’]”’- +L/t 
q=-m 0 

where 

(4.16) 

(4.17) 

A direct evaluation of the integral (4.17) with q=O gives 

For I(E; E ,  Lq) with q # O  integration by parts under the assumption that EL is an 
integer and L/t+ m gives 

I ( t ;  E ,  Lq) = Z-’(~L~)- ’ [EZ(E*~’  + e-*)-’/* + terms =exp(-2Lq/C)]. 

Therefore 

. . ._ 
(4.19) 

Sf@; E ,  L) - -4 L/E+ . . . 

Consider next the case /AI = 1 and IBI =O. Then 

(4.20) 

where the dots stand for contributions which are not proportional to In or L/e. 

Further we note that if IAl = O  and n = IB[ > 1, one can write 

S ( r ) n , o ( ~ , ~ , L ) - L ~ .  . . [ C - ’ + i  ( 1 c k ” / L ) Z ] L ‘ 2 = - ~ S ~ ~ l . 0 ( t ; ~ , L )  
rL S L  

hl= l  h.=I “ = I  

rL - 
+ L 5 . . . I“ dp e.-.[ E-’+ (zkick,/L)‘+(zpPlL)’ 

X2=I  h n = l q = - -  0 v=z 

(4.22) 

The analysis of the integral in  the^ right-hand side of (4.22) repeats the one already 
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carried out for n = 1, the only difference being that in equations (4.16)-(4.19) E-* 
should be replaced by E-* + 2(nkdL)’. Thus we conclude that 

S ~ ~ o ( E ; E , L ) - - ~ S ~ l r l l . o ( E ; & , L ) + . . ‘ = ( - ~ ) ” L / ~ + . .  . I: ~ (4.23) 
hence 

h R z ) o ( E ) ) - ( - + ) ” L / ~ + .  . . (Llt-t”). (4.24) 

(4.25) 

InRz)m(E)=(-l)m(-:)n-mL/E+. . .(LIE-tm) (4.26) 
which completes the first stage of our analysis. 

Let us specify now the boundary conditions and consider the contributions AFd,ds 
in the free energy (2.12) from the above considered factors. 

(1) In the case of fully free boundary conditions, by combining equations (2.12), 
(3.9) at d’=O, (4.6) a n d  (i) (4.10) if Ll$,-+Oor L I ~ L = O ( l ) ;  (ii) (4.24) ifl,lEL-+m, 
we obtain 

Similarly, in the general case we find 
S$Im(E; E ,  L)=(-l)~s$lm,o(E; E ,  L)+’. . =(-l)”(-+)”-”LIE+ . . . 
hence 

-2-d In L + ln(L/&) L&+O 
AFd,,= -2-flnL LIE‘= O(1) (4.27) i -2-‘ In EL + d2-d LIEL L&+ m . 

l o  LIE‘+ m. 

Therefore, a logarithmic contribution appears in all cases when EL-+ m as L-t m . 
Standard finite-sue analysis of the mean spherical constraint [lo] shows that the case 
ELcc L takes place in the neighbourhood of the shifted critical temperature, and the 
case E,, cc Llln L as L-t m is realized at the bulk critical point. 

(2) Tn the case of fully periodic boundary conditions, by combining equations 
(2.12), (3.9) at d’=d, (4.7) a n d  (i)~ (4.10) if LIEL+O or Ll&=O(l); (ii) (4.26) if 
LIEL- m we obtain 

W I E d  L&+O 

AFd,d= 0 LIE‘= 0(1) (4.28) 

Therefore, a logarithmic contribution appears only when L/EL-tO as L+m. 
Standard finite-size analysis of the mean spherical constraint shows that the case 
LIEL+O as L+m is realized at dimensionalities d equal to, or higher than the upper 
critical one du=4. Then [12, 131 

, 

which implies 

AFd. d = 

--In In L 4 d = 4  
d-4 d 2 4 .  

In L -- 
4 

(4.29) 

(4.30) 
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In the scaling regime, 2<d<4 ,  one has L I ~ L = O ( l )  and, therefore, no terms 
proportional to In L appear in the free energy. 

(3) In the case of free boundaries in d - d' 1 dimensions and periodic boundaries 
in d ' a l  dimensions, by combining equations (2.12), (3.9), (4.6), (4.7) and: (i) (4.10) 
if L/IjL+O or L/cL = O(1); (ii) (4.26) if LitL+ m , we obtain 

and 

(4.31) 

(4.32) 

Therefore, a logarithmic contribution may appear when LIIjL+O as L+m , or in the 
special case when d'= 1 and CL.oc Llln L as L+m.  As already mentioned, standard 
finite-size analysis of the mean spherical constraint [lo] shows that the case ELaL 
takes place in the neighbourhood of the shifted critical temperature, and the case 
EL Llln L as L+ m is realized at the bulk critical point. 

, 5. Discussion 

The mean spherical model is particularly interesting for the theory of phase tran- 
sitions, since it exhibits a non-classical phase transition and permits the derivation of 
exact resultsfor both the thermodynamic and the finite-size critical properties. 

As medtioned in the introduction, the other known models for which analogous 
results are available are the Gaussian model in the critical regime LIE+O [3,4] and 
the constrained monomer-dimer (CMD) model [7].  However, the free energy of the 
Gaussian model diverges at criticality, E- m , unless the zero-eigenvalue mode is 
removed by hand. In the CMD model this mode is absent, but logarithmic corrections 
still appear under periodic boundary conditions in d ' a l  dimensions. 

We have shown, that unlike the above-mentioned models, the mean spherical 
model in the finite-size scaling regime (K-K.,,)L"'= 0(1), when LIEL= 0 ( 1 ) ,  
completely obeys the theoretical predictions: logarithmic in L corrections stem only 
from the corners, see equations (4.27). (4.28) and (4.31). Since a d-dimensional 
system with fully free boundary conditions has Zd corners, the contribution per corner 
is 

A P ) ( K I K ~ . ~ )  = -2-ldln L. (5.1) 
The free energy of the critical Gaussian model with the k=O mode removed exhibits 
an unpredicted, geometry-independent In L term under d ' 3  1 periodic boundaries. 
Only if the free energy difference f i o - f i d r  for some d ' a l  is considered, the 
contribution per corner (5.1) would follow. The same holds, up to the coefficient -2, 
for the CMD model. 

An interesting result is the appearance of a In In L term at the upper critical 
dimensionality, equation (4.30). 

The In L term persisting under fully periodic boundary conditions for all d>d,  
(4.30) can be cast in the form 

d - 4  
AFd. d = -4d InN d>4.  (5.2) 



Finite-size logarithmic corrections 4495 

Hence, by taking the limit d+ m we obtain AF-, DI = -$In N ,  which is exactly the 
logarithmic correction found in [14] for the free energy of the infinitely coordinated 
mean spherical model containing N particles. 

Some unexpected results are found for the mean spherical model with free 
boundaries at the bulk critical point K = Kc, when LIEL+ a. By comparing equations 
(4.27) and (4.32) we may conclude that in the geometry with fully free boundaries the 
contribution per corner is, compare with (5.1), 

A@")(K,) -2-Zdln EL(Kc) (5.3) 

Afl$dge)(Kc) 2-=*' L / E L ( K ~ .  (5.4) 

and the contribution from each of the dZd-' edges is 

Note that a d-dimensional system with one periodic boundary has 2d-' edges, so that 
equation (4.32) gives the same form (5.4) for the contribution per edge. 

Our anlaysis of the three-dimensional case [lo] has shown that in the'presence of 
free surfaces the correlation length EL at the bulk critical coupling K=X;  gains a 
logarithmic factor (d = 3): 

31nL d'=O L d'=2. 
L/EL(Kc) = 2 In L d'=1 (5.5) 

By inserting (5.5) at d'=O in (5.3) at d=3 we obtain the explicit corner contribution 
at the bulk critical point, 

1 1 
64 64 A ~ ~ m " ~ ~ ( K , ) = - - l n L ~ + - ~ l n L  (5.6) 

and similarly from (5.4) we find the corresponding edge contribution (d' =0) 

3 

32 AFy@(Kc) = -In L. (5.7) 

Note that the logarithmic edge contribution depends on the boundary oonditions 
(d' = 0 or 1) through the correlation length (5.5). Thus from (5.5) at d' = 1 and (5.4) at 
d = 3  we obtain 

1 
AF$F)(K,) =-In 16 L. ( 5 4  

To the best of our knowledge, double-logarithmic corrections from corners and 
logarithmic corrections from one-dimensional edges have not been predicted by finite- 
size scaling theory (see, for example, the recent paper [15]). Their appearance in the 
mean spherical model with free surfaces is due to the fact that the finite-size shift in 
the critical temperature modifies the asymptotic behaviour of the correlation length 
from the usual type, EL(&.L)=L, to the anomalous one, ij ,(K,)=L/lnL. Thus, the 
edge contributions proportional to L/EL (equation (5.4)), become logarithmic in L at 
the bulk critical point, and the comer contributions proportional to In EL (equation 
(5.3)), acquire additional double-logarithmic in L corrections. 

The above results may have general implications for the finite-size scaling theory, 
since they demonstrate the importance of the way in which criticality is approached. 
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